The Stoichiometry and Promoter Role of Chlorosulfuric and Fuming Sulfuric Acids for α-Halogenation of Aliphatic Acid¹⁾

Yoshiro Ogata* and Shinya Watanabe

Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464 (Received December 27, 1979)

Synopsis. The stoichiometry for the chlorosulfuric acid promoted α -halogenation and the role of fuming sulfuric acid instead of chlorosulfuric acid have been studied. In the α -bromination with molecular bromine, 1 mol of halogen afforded 2 mol of aliphatic α -bromo acid just as the α -iodination, but it is different from α -chlorination which affords only 1 mol of α -chloro acid. Fuming sulfuric acid instead of chlorosulfuric acid was found to be effective for α -bromination, but the yield was lower, while no α -iodination was observed with fuming sulfuric acid.

We have reported a novel method for the preparation of aliphatic α-halo acids by the reaction of molecular halogen in the presence of strong acid, e.g., ClSO₃H,²⁾ through probable intermediary formation of ketenes.³⁾

$$RR'CHCO_2H + CISO_3H \xrightarrow{fast} RR'C=C=O + HCl + H_2SO_4 \quad (1)$$

$$RR'C=C=O + X_2 \xrightarrow{slow} RR'CXCOX$$
 (2)

The product in iodination (1, X=I) was found to regenerate iodine.^{2g)}

$$RR'CXCOX + H_2SO_4 \longrightarrow \\ RR'CXCO_2H + HX + SO_3 \quad (3a)$$

$$2HX + SO_3 \text{ (or ClSO}_3H) \longrightarrow X_2 + H_2O + SO_2 (+HCl)$$
 (3b)

Hence 1 mol of iodine can give 2 mol of α -iodo acid (Eq. 4), but the stoichiometry is unknown for bromination and chlorination.

$$RR'CHCO_2H + 0.5I_2 + CISO_3H \longrightarrow RR'CICO_2H + HCl + 0.5SO_2 + 0.5H_2SO_4$$
 (4)

Also we found that fuming H_2SO_4 could be used as an acidic promoter for the α -chlorination, but nothing is known about the yield of α -bromination and α -iodination, when fuming H_2SO_4 is used instead of ClSO₃H. The present note discloses these obscurities in the halogenation.

Stoichiometry of Bromination. It is known that HBr is oxidized by CISO₃H to form Br_2 ,⁴⁾ so that Br_2 formed may be used again for the bromination. In fact, we confirmed that 1 mol of Br_2 can give ca. 2 mol of aliphatic α -bromo acid as shown in Table 1 (Runs 1, 4, and 5). Hence the stoichiometry of bromination is analogous to that of iodination (Eq. 4).

$$RR'CHCO_2H + CISO_3H + 0.5Br_2 \longrightarrow RR'CBrCO_2H + HCl + 0.5H_2SO_4 + 0.5SO_2$$
 (5)

Runs 4 and 5 imply that an additional amount of aliphatic acids is consumed by the side reaction with $ClSO_3H^{5}$ (e.g., α -sulfonation), but since there is little difference between the yields in Runs 4 and 5, the rate of α -bromination should be faster than the side reaction.

On the other hand, unless excess aliphatic acid and ClSO₃H based on Eqs. 4 and 5 are used, the yield of iodination is rather low; e.g., Run 8 gives 43% and Run 9 gives 55% of iodo acid, probably because the rate of iodination is lower than that of bromination and comparable to that of the side reaction. But when excess aliphatic acid and excess ClSO₃H to iodine are used (Run 7), the yield of α -iodination based on the used iodine increases in spite of the increased side reaction.

When a mixture of halogen and aliphatic acid in a stoichiometric ratio according to Eqs. 4 and 5 was used,

Table 1. Yields of α -halogenation of aliphatic acids^{a)}

Run	$\frac{\text{Substrate}}{(\text{mol} \cdot \text{dm}^{-3})} \\ \overline{\text{CH}_3(\text{CH}_2)_6\text{CO}_2\text{H}}$	Halogen (mol·dm ⁻³)		Promoter (mol·dm-3)		Yield (%)	Unreacted Substrate
		$\overline{\mathrm{Br_2}}$	I ₂	CISO ₃ H	fuming H ₂ SO ₄	1 leiu (/ ₀)	(mol·dm ⁻³)
1	1.0	0.5		1.0		88.9	
2	1.0	0.5		0.25		29.2	0.76
3	1.0	0.5		0.1		9.7	0.85
4	1.0	0.25	<u>-</u>	1.0	-	97.8	0.11
5	1.0	0.25		0.5		93.3	0.49
6	1.0	0.25		0.3	-	56.5	0.66
7	1.0		0.25	1.0	-	100.0 ^{b)}	
8	1.0		0.25	0.5		43.0 ^{b)}	
9	0.5		0.25	0.5		54.5 ^{b)}	
10	1.0	0.25	-		1.0	71.6	0.50
11	1.0 $CH_3(CH_2)_2CO_2H$	0.25	_	_	0.5	53.1	0.75
12	1.7	0.13			1.0	73.4°)	
13	1.0	0.25		_	1.0	27.0°)	
14	0.2		0.2		0.13	0.0^{b}	
15	1.7		0.15	-	0.6	0.0	

a) The yields were calculated on the basis of molecular halogen according to the stoichiometry of Eqs. 4 and 5.

b) Ref. 2b. c) Ref. 2f.

the yield of bromination (Run 1) was higher (88.9%) than the yield of iodination (54.5%) under analogous conditions. This is ascribed to the higher electrophilic reactivity of bromine than iodine toward C=C bond of ketene as apparent from our previous kinetic data.^{2h)}

Under conditions of $2[Br_2]_0 > [CISO_3H]_0$ (Runs 2, 3 and 6), the molar yield of α -bromo acid is approximately equal to the moles of $CISO_3H$ used, whereas the molar yield of α -chloro acid is ca. four fold of the moles of $CISO_3H$ used in spite of the otherwise analogous reaction conditions.^{2e)} This phenomenon is tentatively explained by the following mechanism for chlorination.

 $RR'CCICOCI + RR'CHCO_2H \Longrightarrow$

$$RR'CCICO_2H + RR'CHCOCl$$
 (6a)

$$RR'CHCOCl \longrightarrow RR'C=C=O + HCl$$
 (6b)

Here, α -chloroacyl chloride, which has been formed through addition of Cl_2 to ketene (Eqs. 1 and 2), can convert unreacted aliphatic acid into acyl chloride (Eq. 6a); he acyl chloride thus formed is known to give again ketene (Eq. 6b), which should react with Cl_2 , giving again α -chloroacyl chloride. Thus only catalytic amount of ClSO_3H can give a high yield of α -chloro acid because of the easier elimination of HCl from acyl chloride (Eq. 6b). On the other hand, the oxidation of α -bromoacyl bromide with chlorosulfuric acid affording Br_2 occurs at 80 °C (Eq. 3) because of the lower oxidation potential of Br^- (+1.066 V for $\text{Br}^- \rightarrow 1/2$ Br_2 ; +1.358 V for $\text{Cl}^- \rightarrow 1/2$ Cl_2); hence the bromination obeys the stoichiometry of Eq. 5, regenerating Br_2 .

Bromination and Iodination with Fuming Sulfuric Acid as a Promoter. As has been observed with α-chlorination, ^{2a,d}) the α-bromination could be carried out with fuming H₂SO₄ (Runs 10 and 11) via a ketene formed as shown in Eq. 7.

 $RR'CHCO_2H + SO_3 \xrightarrow{} RR'C=C=O + H_2SO_4$ (7)

Since 30% fuming H_2SO_4 is expressed as H_2SO_4 –0.5 SO_3 , the yield 53% of α -bromo acid in Run 11 corresponds to the moles of SO_3 contained in fuming H_2SO_4 used.

On the other hand, no iodination occurred with fuming H_2SO_4 ; this is ascribed to the easy decomposition of α -iodo acid with fuming H_2SO_4 . In fact, when 15 mmol of fuming H_2SO_4 was introduced into the 1,2-dichloroethane solution of 4.2 mmol of α -iodobutyric acid, 0.63 mmol of iodine were easily liberated at room temperature after 5 min, but only 0.016 mmol of iodine were liberated with $ClSO_3H$. Similar decomposition giving I_2 was observed with α -iodobutyryl chloride and fuming H_2SO_4 .

Also the lower yield of bromination with fuming H_2SO_4 than that with $ClSO_3H$ may be due to the slower yet noticeable decomposition of α -bromoacyl bromide by fuming H_2SO_4 . Indeed, 1.8 mmol of α -bromopropionyl bromide mixed with 5 mmol of fuming H_2SO_4 gave 0.42 mmol of bromine and 0.23 mmol of α -bromopropionyl bromide at 80 °C after 30 min. But 1.4 mmol of α -bromopropionyl bromide mixed with 5 mmol of α -bromopropionyl bromide at 80 °C after 30 min.

On the other hand, no molecular chlorine was detected in the reaction of chloroacetyl chloride (CH₂ClCOCl) with fuming H₂SO₄ or ClSO₃H, hence chlorine as acyl chloride produced during chlorination cannot be recycled by oxidation with ClSO₃H.

Experimental

Materials. Commercial first grade octanoic acid (bp 147—148 °C/35 mmHg), butyric acid (bp 73—74 °C/20 mmHg) and chlorosulfuric acid (bp 86-88 °C/33 mmHg) were distilled before use. Commerical first grade bromine, iodine, chloroacetyl chloride, and fuming H_2SO_4 were used without futher purification. α-Iodobutyric acid (mp 39— 40 °C) and α-iodobutyryl chloride (bp 36—38 °C/0.38 mmHg) were prepared in thionyl chloride by the literature method. 8) α-Bromopropionyl bromide (bp 154—155 °C) was prepared by the literature method.9) Methyl esters of those aliphatic acids had single GLC peaks. The physical properties of methyl α-bromooctanoate were: bp 136—138 °C/24 mmHg; NMR (CCl₄): δ 3.71 (s, 3H, OCH₃), 4.09 (t, J=7.8 Hz, 1H, α-H). The physical properties of other products were reported previously.2f,h)

Products. A 1,2-dichloroethane solution (50 ml) containing aliphatic acid and halogen was thermostated at 80 °C and ClSO₃H (or fuming H₂SO₄) was introduced and heated at 80 °C for 2 h. After an appropriate time, 2 ml of the solution was treated with Na₂S₂O₃ to remove halogen, and esterified by an ethereal solution of diazomethane.

The yield was measured by means of GLC using a Yanagimoto GCG-550 gas chromatograph equipped with a H-flame ionization detector employing a copper column 3 mm \times 100 cm packed with PEG 20 M (10%) on Chromosorb WAW (60—80 mesh) with methyl caprate as an internal standard. The isolated methyl α -bromooctanoate was identified by GLC and NMR (a 60 MHz Hitachi R-24 B NMR spectrometer).

References

- 1) Contribution No. 270.
- 2) a) Y. Ogata, T. Harada, K. Matsuyama, and T. Ikejiri, J. Org. Chem., 40, 2960 (1975); b) Y. Ogata and K. Matsuyama, Tetrahedron, 26, 5929 (1970); c) Y. Ogata and T. Sugimoto, Chem. Ind. (London), 1977, 538; d) Y. Ogata and T. Ikejiri, Nippon Kagaku Kaishi, 1975, 1517; e) Y. Ogata, T. Sugimoto, and M. Inaishi, Bull. Chem. Soc. Jpn., 52, 255 (1979); f) Y. Ogata and T. Sugimoto, J. Org. Chem., 43, 3684 (1978); g) Y. Ogata and S. Watanabe, ibid., 44, 2768 (1979); h) Y. Ogata and S. Watanabe, ibid., 45, in press (1980).
- 3) Y. Ogata, T. Harada, and T. Sugimoto, Can. J. Chem., 55, 1268 (1977).
 - 4) Gmelins Handbuch, 7, 212 (1931).
- 5) a) F. Gunther and J. Hetzer, U. S. Patent 1926442 [Chem. Abstr., 27, 6001 (1933)]; b) J. K. Weil, L. P. Witnauer, and A. J. Stirton, J. Am. Chem. Soc., 75, 2526 (1953); c) E. E. Gilbert, Chem. Rev., 62, 549 (1962).
 - 6) H. B. Watson, Chem. Rev., 7, 173 (1930).
- 7) a) M. S. Newman and E. A. Zuech, *J. Org. Chem.*, **27**, 1436 (1962); b) R. C. Fuson, L. J. Armstrong, D. H. Chadwich, J. W. Kneisley, S. P. Rowland, W. J. Shenk, Jr., and Q. F. Soper, *J. Am. Chem. Soc.*, **67**, 386, 1937 (1945).
- 8) D. N. Harpp, L. Q. Bao, C. J. Black, J. G. Gleason, and R. A. Smith, J. Org. Chem., 40, 3420 (1975).
- 9) C. W. Smith and D. G. Norton, *Org. Synth.*, Coll. Vol. IV, 348 (1963).